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1  |  INTRODUC TION

Cycads are tropical gymnosperms and among the oldest living 
lineages of seed plants, with a fossil record extending back over 
265 million years (Zhifeng & Thomas, 1989). Cycads are considered 
“living fossils” since some morphological traits from species in the 

Mesozoic are remarkably well preserved in current lineages (Norstog 
& Nicholls, 1997). Despite these ancient origins, all cycad genera 
have undergone recent radiations across the tropics (Nagalingum 
et al., 2011). Little research, however, has focused on ecological in-
teractions and correlated evolution  between cycads and animals. 
Such work is crucial not only to understand the evolution of these 
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Abstract
Eumaeus butterflies are obligate herbivores of Zamia, the most diverse neotropical 
genus of cycads. Eumaeus–Zamia interactions have been characterized mainly for spe-
cies distributed in North and Central America. However, larval host plant use by the 
southern Eumaeus clade remains largely unknown, precluding a comprehensive study 
of co-evolution between the genera. Here, we combine fieldwork with museum and 
literature surveys to expand herbivory records for Eumaeus from 21 to 38 Zamia spe-
cies. We inferred a time-calibrated phylogeny of Eumaeus to test for distinct macro-
evolutionary scenarios of larval host plant conservatism and co-evolution. We found a 
remarkable coincidence between Eumaeus and Zamia diversification, with the butter-
fly stem group diverging at the same time as the most recent radiation of Zamia in the 
Miocene. Cophylogenetic reconciliation analyses show a strong cophylogenetic signal 
between cycads and their butterfly herbivores. Bipartite model-based approaches in-
dicate that this is because closely related Zamia species are used by the same Eumaeus 
species, suggesting larval host plant resource tracking by the butterfly herbivores. 
Our results highlight a case of tight evolution between Eumaeus butterflies and cy-
cads, pointing to the generality of correlated evolution and phylogenetic tracking in 
plant–herbivore interactions across seed plants.
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interactions in plants other than angiosperms but also to better char-
acterize the population dynamics of cycads and associated species 
in present-day ecosystems. This is particularly pressing given that 
cycads are one of the plant taxa with the highest risk of extinction, 
rendering their obligate pollinators and herbivores similarly imper-
iled (IUCN Red List of Threatened Species, 2022).

As gymnosperms, cycads have commonly been thought to have 
few ecological interactions with animals. However, this view was 
challenged by work in the 1980s demonstrating beetle-mediated 
pollination (Norstog & Fawcett, 1989; Tang, 1987) and specialized in-
sect herbivory (Bowers & Larin, 1989; Clark & Clark, 1991; Rothschild 
et al., 1986). It is now known that all living cycads engage in obligate 
and highly specialized interactions with beetles and thrips for polli-
nation (Toon et al., 2020). In addition, butterflies, moths, and bee-
tles are specialist herbivores of many cycads (Salzman et al., 2018). 
Cycads exhibit a remarkable repertoire of chemical defenses, com-
prising compounds known to be highly neurotoxic and carcino-
genic to some animals (Charlton et al., 1992; Duncan et al.,  1988; 
Laqueur & Spatz, 1968). The best-characterized compounds include 
B-Methylamino-L-alanine (BMAA) and the non-protein amino acid 
methylazoxymethanol acetate (MAM), both found in the tissues of 
all cycad genera (De Luca et al., 1980; Vega & Bell, 1967).

Most cycad-feeding insects are lepidopterans (butterflies and 
moths), with larval host plant records from nine genera in the families 
Erebidae, Cosmopterigidae, Tineidae, Nymphalidae, Blastobasidae, 
Geometridae, and Lycaenidae (Whitaker & Salzman, 2020). Despite 
this taxonomic diversity, only six genera of geometrids and lycaenid 
butterflies are known to have cycads as obligate caterpillar hosts. 
Within the Lycaenidae, the genera Luthrodes and Theclinesthes 
feed on Cycas and Macrozamia in Asia and Oceania, respectively, 
and three species from the Geometridae genera Callioratis feed on 
Encephalartos and Stangeria in Africa (Whitaker & Salzman, 2020). 
In the Neotropics, the butterflies of the genus Eumaeus are the only 
known obligate herbivores of cycads, feeding on Zamiaceae. Early-
divergent species of Eumaeus are able to feed on genera such as 
Dioon and Ceratozamia, but the majority use Zamia, the most diverse 
neotropical genus of cycads, as their primary larval host plants.

Since all Eumaeus species are obligate herbivores of Zamiaceae, 
the cycad-feeding habit is inferred to have evolved in the last com-
mon ancestor of the genus (Robbins et al., 2021). The shift to feeding 
on cycads seems to have been accompanied by the rapid evolution 
of aposematism and conspicuously gregarious, non-ant-associated 
larvae, a unique phenotype within the family Lycaenidae (Pierce 
et al.,  2002; Robbins et al.,  2021). While many lycaenid caterpil-
lars are cryptically colored and form associations with ants (Pierce 
et al., 2002), Eumaeus caterpillars are generally non-ant associated 
and have aposematic, bright-red coloration with yellow or white 
bands. The adults of the majority of species also have red elements 
on the body and wings. Accordingly, cycasin and MAM compounds 
sequestered from cycads render all life stages (eggs, larvae, and 
adults) unpalatable to predators (Bowers & Larin,  1989; Castillo-
Guevara & Rico-Gray,  2002; Rothschild et al.,  1986; Schneider 
et al., 2002). Caterpillars are likely able to detoxify these compounds 

from their host plants, as recent genomic evidence demonstrates 
significant expansion in detoxification and digestion enzymes (Cong 
et al.,  2016) and rapid evolution of protein families related to au-
tophagy and phagocytosis underlying these adaptations (Robbins 
et al., 2021).

These findings add to a growing number of examples of butter-
fly detoxification of plant toxins (Edger et al., 2015; Matsubayashi 
et al., 2010; Wheat et al., 2007; Winkler & Mitter, 2008). Ehrlich and 
Raven (1964) proposed that the arms race between the evolution of 
toxic secondary compounds in plants and the associated detoxifica-
tion mechanisms in butterflies results in a step-wise, reciprocal pat-
tern of co-evolution. The emerging consensus from the majority of 
plant–insect interaction studies does not support the strict “escape 
and radiate” interpretation of this model, but nevertheless points to 
strong phylogenetic conservatism of insect-host plant associations 
(Allio et al., 2021; Forister et al., 2015). The literature on reciprocal 
evolution is significantly biased toward interactions with flowering 
plants, and little is known about macroevolutionary patterns of her-
bivory in other plant groups. Therefore, the Zamia–Eumaeus system 
provides an excellent opportunity to understand the ecology and 
evolution of highly specialized herbivory beyond angiosperms and 
test the generality of this pattern across seed plants.

Although Eumaeus–Zamia is an ideal system to study phylo-
genetic conservatism of larval host plant associations, there is a 
significant gap in natural history knowledge for species occurring 
in the southern distribution of the range of Eumaeus. The three 
northern species, Eumaeus childrenae, Eumaeus atala, and Eumaeus 
toxea are distributed from Florida to Mexico and have been widely 
collected and studied (see Contreras-Medina et al., 2003; Jiménez-
Pérez et al.,  2017; Koi & Daniels, 2015, 2017; Koi & Hall, 2016; 
Martínez-Lendech et al.,  2007; Ruiz–García, 2020). The southern 
species, Eumaeus godartii, Eumaeus toxana, and Eumaeus minyas 
form a monophyletic lineage (Robbins et al.,  2021) distributed 
from Costa Rica to Northern Bolivia, and are hereafter referred to 
as the “southern clade.” In contrast to the northern species, the 
larval host plants and geographical distributions of the south-
ern clade are poorly known, and few studies on individual spe-
cies have been conducted (Castillo-Guevara & Rico-Gray,  2002, 
2003; González,  2004; Santos Murgas & Abrego,  2016; Segalla 
et al., 2021; Taylor, 2020).

This scarcity of data for the southern clade of Eumaeus has thus 
far precluded a genus-level study of phylogenetic patterns under-
lying larval host plant use. Here, we combine fieldwork with a re-
view of collections and literature to fill gaps in our knowledge of the 
geographical distributions and larval host plants for species in the 
southern Eumaeus clade, particularly in Colombia. Colombia is not 
only the world's most species-rich country for Zamia (López-Gallego 
et al., 2019) and Eumaeus, but it is also the country that connects 
species in the Amazon with those in the Central-American and 
Caribbean regions, via the Darién and Andean forests. We built the 
most comprehensive dataset to date on distributions and larval host 
plant use for the genus, and use it to test co-evolutionary hypothe-
ses about Zamia–Eumaeus interactions.
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2  |  MATERIAL S AND METHODS

2.1  |  Sampling in natural populations

Field studies were carried out in natural populations at key locali-
ties of the Zamia distribution in Colombia. We explored four lo-
calities encompassing distinct biogeographic regions ranging from 
the Pacific to the Amazon. These were as follows: (1) “Cañón del 
Río Alicante”, Maceo, Antioquia, in the Magdalena Valley region 
(6°33′3″N, 74°54′3″W, 500 masl, January, 2021); (2) “Hacienda 
La Mejía”, Chigorodó, Antioquia, in the Darién region (7°31′21″N, 
76°35′2″W, 80 masl, June, 2021); (3) The Tropical Forestry Center 
“Pedro Antonio Pineda”, Buenaventura, Valle del Cauca, in the 
Pacific region (3°57′1″N, 76°59′2″W, 60 masl, December 2021); 
(4) Biological station “El Zafire”, Leticia, Amazonas, in the Amazon 
(4°0′32.0″S, 69°53′4″W, 118 masl, in January, 2022).

In each of the localities, adult Eumaeus butterflies were col-
lected manually using entomological nets. Specimens were 
stored in glassine envelopes and deposited in the Biological col-
lection of CES University (CBUCES; Medellín, Colombia) and the 
Entomological collection of the University of Antioquia (CEUA; 
Medellín, Colombia) biological collections for later identification. 
Larvae were collected manually on Zamia leaves and stored in 70% 
Ethanol or reared ex situ up to the adult stage for identification. 
Larval host plant species and geographical coordinates were re-
corded in the field upon collection.

2.2  |  Larval host plant association survey

We surveyed Eumaeus specimens held in the main entomologi-
cal collections in Colombia, including those at the CES University 
(CBUCES), the University of Antioquia (CEUA), the Francisco 
Luis Gallego Entomological Museum at the National University of 
Colombia in Medellín (MEFLG), the Natural History Museum at the 
National University of Colombia (ICN-L), and the Alexander von 
Humboldt Biological Resources Research Institute (IAvH-E). We 
also surveyed the Smithsonian National Museum of Natural History 
(USNM) in Washington, US; Museum of Natural History (MUSM) 
in Lima, Peru and the British Museum of Natural History (NHM) in 
London, UK.

In addition, we compiled photographic records of Eumaeus taken 
on Zamia leaves during field trips by the Colombian Cycad Society, 
an academic NGO dedicated to cycad research and conservation. 
Most of these photographs were of either the adult or larval stages, 
meaning we could reliably identify the Eumaeus species as well as 
its larval host plant. We also checked and compiled records of adult 
Eumaeus from online biodiversity databases (GBIF, 2022) and the 
web pages of natural history museums (the Yale Peabody Museum 
of Natural History, the Museum of Comparative Zoology of Harvard 
University, the McGuire Center for Lepidoptera and Biodiversity, the 
Auckland Museum Entomology Collection, the Alfonso L. Herrera 
Zoology Museum in the National Autonomous University of Mexico, 

the Royal Belgian Institute of Natural Sciences Collection, the 
National Institute of Biodiversity of Costa Rica and the Museum of 
Natural History of Mexico City). Using all of the available records, we 
then mapped the distribution of Eumaeus using QGIS 3.26.1 (QGIS 
Development Team, 2022).

When larval host plant data were not available for a record, we 
inferred the host from localities where only a single Zamia species 
co-occurred with the Eumaeus record. As such, only records for allo-
patric populations of Zamia were inferred when no direct larval feed-
ing was confirmed in the field. Although not used for any subsequent 
analysis, we still noted all co-ocurring Zamia species for which their 
distributions overlap with a Eumaeus record in Table S1.

2.3  |  Specimens' identification

All museum and field-collected specimens, as well as the avail-
able photographs, were identified using Robbins et al.  (2021), 
Goodson  (1947), and Butterflies of America (Warren et al., 2016). 
Key morphological characters included: coloration, size, wing shape, 
presence and position of wing spots, and presence of tibial spurs. 
Most specimens were identified based on external morphological 
characters, but we dissected genitalia of some specimens to confirm 
the identification. When morphological characters of specimens 
were uncertain, did not coincide with key morphological characters 
of already accepted species and were not differentiated by their 
genitalia, we classified these specimens as intermediate specimens.

2.4  |  Inference of phylogenetic associations 
between Eumaeus and Zamia

We used the data from fieldwork, biological collections, biodiversity 
platforms, and literature to build a presence/absence matrix of lar-
val host plant use by Eumaeus. To test for the broad cophylogenetic 
signal between Zamia and Eumaeus, we used the R package paco: 
Procrustes Application to Cophylogenetic Analysis 
(Balbuena et al., 2013). This method is the most recent and widely-
used global-fit approach to cophylogeny (Blasco-Costa et al., 2021). 
Paco uses the phylogenies of both groups and the interaction net-
work to test whether the observed matrix is more congruent with 
the evolutionary history of both partners than a random assemblage 
of these interactions (Balbuena et al., 2013). We used the r0 algo-
rithm, which assumes that Eumaeus tracks the phylogeny of Zamia. 
This algorithm is the adequate model for herbivores and parasites, 
yet to standardize both phylogenies prior to superimposition, the ar-
gument “symmetry” in the model was set to TRUE. This means that 
both phylogenies are standardized prior to superimposition result-
ing in the best-fit of the superimposition being independent of both 
phylogenies (Hutchinson et al.,  2017). Cophylogenetic signal was 
considered to be significant when it was smaller than 95% of the 
values obtained from 1000 randomizations of the aggregated inter-
action dataset (Fuzessy et al., 2022).
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Since paco tests for overall congruence of the phylogenies of 
the interacting groups, but does not partition the contribution of the 
different phylogenies to the cophylogenetic signal, we additionally 
fitted linear mixed models. To test for phylogenetic signal in Zamia–
Eumaeus interactions, we built a phylogenetic generalized linear 
mixed model (PGLMM), using the R package phyr (Li et al., 2020). 
PGLMMs treat the strengths of pairwise interactions (in this case, 
larval host plant use by butterflies) as the response variable and in-
corporate phylogenies as anticipated covariances among these in-
teractions (Rafferty & Ives, 2013). The model structure is identical 
to equation 3 in Rafferty and Ives (2013), except we specified a bi-
nomial error distribution because the response variable Y comprises 
presence/absence data. The model contains nested phylogenetic 
covariance matrices describing three patterns. The first describes 
the pattern in which closely related butterflies are more likely to use 
the same host plant (covariance matrix c). The second describes the 
pattern in which a butterfly species is more likely to use a set of 
closely related host plants (covariance matrix g). The third describes 
the pattern in which closely related butterflies are more likely to use 
closely related host plants (covariance matrix h). The significance of 
these phylogenetic effects can be tested by dropping them and ap-
plying likelihood ratio tests (LTRs). The covariance matrices c and 
g are nested components of covariance matrices h. Therefore, we 
tested the significance of h by dropping it from a complete model in-
cluding all terms (c + g + h), but c and g were tested by dropping them 
from a reduced model which did not contain the other two terms. Of 
the 36 species of Zamia recorded as larval host plants of Eumaeus, 33 
were used in the phylogenetic analysis; the remaining species were 
not included in the available phylogeny (Calonje et al., 2019). We 
scaled the Eumaeus tree by branch length and transformed it into an 
ultrametric topology using the chronos function (lambda = 0) in APE 
(Paradis & Schliep, 2019).

2.5  |  Estimation of divergence times in the 
Zamia and Eumaeus phylogenies

As testing for co-evolution entails accounting for the topology as well 
as the diversification timing of the interacting groups, we used the 
most recent time-calibrated molecular phylogeny of Zamia (Calonje 
et al., 2019). For Eumaeus, we inferred an ultrametric genome-wide 
phylogeny using sequence data published by Robbins et al.  (2021). 
This included all nuclear genes annotated from the E. atala nuclear 
genome, sex-linked protein-coding genes, and 13 mitochondrial 
genes (Robbins et al., 2021). The dataset was then downsampled to 
100 kb codons and aligned using TBLASTN for tree reconstruction 
(Gertz et al., 2006; Robbins et al., 2021). The maximum likelihood 
tree from Robbins et al. (2021) and the 100 kb codon alignment were 
used for divergence time estimation in MCMCtree v4.9 (dos Reis & 
Yang, 2019). We incorporated secondary node calibrations based on 
a recent fossil-calibrated phylogeny of Lepidoptera and Eumaeini 
(Espeland et al.,  2018; Valencia-Montoya et al.,  2021). We used 
two node calibrations, one for the last common ancestor between 

Micandra and Eumaeus [20.19–13.56 Ma] and one between Eumaeus 
and its sister genus Theorema [7.07–12.39 Ma]. We implemented a 
conservative age constraint on the root of the tree, with a minimum 
age of 24 Ma for the Eumaeini tribe, based on Espeland et al. (2018) 
and Valencia-Montoya et al. (2021). The remaining node age priors 
without calibration were set to uniform (1 1 0.1). We performed an 
approximate likelihood calculation of divergence time using the es-
timation of the gradient and Hessian matrix of the branch lengths. 
The gamma prior for variable rates among sites (alpha) was set to 
a = 1, b = 1, the Dirichlet-gamma prior for the mean substitution rate 
for overall rates of genes to a = 2, b = 20, and the Dirichlet-gamma 
prior for the rate drift parameter to a = 1, b = 1. The gamma prior for 
the transition/transversion ratio (kappa) was set to a = 6, b = 2. The 
clock was set to independent rates (2), the tree prior to birth-death, 
and the rate prior to lognormal. Due to the large size of the genomic 
dataset, we ran the concatenated alignment under the F84 substitu-
tion model, but to allow for dynamic partitioning we included gamma 
with five rate parameters. To test that the priors were adequate, we 
first ran an analysis without computing the likelihood (usedata = 0), 
followed by three independent runs to ensure convergence.

3  |  RESULTS

3.1  |  Geographic distributions and host plants of 
Eumaeus

On the southern Pacific coast of Colombia, we found Eumaeus godar-
tii feeding on Zamia chigua and Z. amplifolia (Figure 1k–n), which co-
occur near Buenaventura. We also identified museum specimens 
indicating that E. godartii occurs in the Darién region close to the 
border with Panama (Figure 2b, yellow dots). Eumaeus minyas was 
collected in Maceo in the central Andean cordillera on the eastern 
slope of the Magdalena River, where it was using Z. incognita as 
host plant (Figure 1j). This population was previously described in 
the literature as E. cf. godartii (Valencia-Montoya et al., 2017), but 
we confirmed that diagnostic characters suggest it is E. minyas (fol-
lowing Robbins et al., 2021). On the basis of museum records, we 
here extend the distribution of E. minyas throughout the Magdalena 
River region in the Colombian Andes (Figure 2b, blue dots). Notably, 
specimens exhibiting intermediate morphological traits between E. 
minyas and E. godartii were found in transitional zones in the central 
Andean cordillera, between the Cauca and Magdalena River valleys 
(Figure 2b violet dots, Appendix S1). Eumaeus toxana was found in 
white-sand forests near Leticia in the Colombian Amazon region, 
using Z. cupatiensis as host plant (Figure 1a–d).

After reviewing museum specimens and online data sources and 
coupling them with our field data, we were able to create a significantly 
improved continental-scale distribution map of Eumaeus. We con-
firmed that E. atala, E. toxea, and E. childrenae only occur north of lati-
tude 13°N in Central and North America (Figure 2a). We expanded the 
known distribution of the southern clade, notably filling gaps in north-
ern South America, and observed that it is distributed from Nicaragua 
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    |  5 of 13SIERRA-­BOTERO et al.

to the Brazilian Amazon (Figure 2a). We also extended and updated 
distribution records as follows: (1) E. godartii is distributed throughout 
the Pacific coast region, from Nicaragua to western Ecuador, including 
the Chocó-Darién and the Cauca river basin in Colombia (Figure 2b); (2) 
E. minyas is found in the Magdalena valley and in the western Amazon 
Basin from Colombia to Mato Grosso, Brazil where it co-occurs with 
E. toxana (3) E. toxana occurs in the Amazon Basin from Obidos to the 
Andes and from Venezuela/Colombia to Mato Grosso, Brazil.

3.2  |  Phylogenetic association between 
Eumaeus and Zamia

Eumaeus butterflies show remarkably strong host plant preferences 
(Figure 3) with little evidence for overlap between species. Only E. 
minyas and E. toxana, which are sympatric in the Colombian Amazon, 
are likely to share host plants. The remaining species, E. childrenae, 
E. toxea, and E. godartii, do not overlap with other Eumaeus species in 
the host plants they use.

The global-fit analysis revealed a significant cophylogenetic 
signal between Zamia and Eumaeus (PACo: m2

XY = 0.4488, p < .001, 

n = 1000, Figure 4). Using a PGLMM, we found a significant effect 
of plant phylogeny (LRT χ2 = 34.08, p < .001), but we did not find a 
similar effect of butterfly phylogeny (Table 1). Thus, our results sug-
gest that the phylogenetic signal is primarily driven by host plants, 
and this is congruent with the patterns of phylogenetic clustering 
apparent in Figure 3.

Unsurprisingly, the distributions of Eumaeus and Zamia are 
remarkably congruent (see Figure 2a). Northerly distributed spe-
cies of Eumaeus range from North America to Mexico and the 
Caribbean and are associated with Zamia species in the Caribbean 
and Mainland clades. Eumaeus atala uses solely the Caribbean spe-
cies of Zamia (Figure 3a), although not all the zamias in this clade 
are restricted to the Caribbean. E. childrenae and E. toxea over-
lap in the Sierra Madre Forest and Mexican Drylands bioregion 
and use exclusively the Fisheri and Mesoamerica clades of Zamia 
(Figure  3c,d). Species of the Eumaeus southern clade use host 
plant species from the Central-meridional clade of Zamia, compris-
ing the Isthmus and South America species (Figure  3i). Eumaeus 
godartii is the only species feeding on cycads from the Isthmus 
clade (Figure  3j), even though some species of host plant have 
ranges that extend to northern South America. Indeed, E. godartii 

F I G U R E  1 Species of the southern Eumaeus clade. As with other Eumaeus species, immatures develop only on cycads, specifically 
Zamia. (a–e): E. toxana. (a) Z. cupatiensis; the host plant species of E. toxana in the Amazon. (b) Egg clutch on Z. cupatiensis leaf. (c) Larva 
on Z. cupatiensis leaf. (d) Late stage pupae. (e) Dorsal view of an adult female E. toxana from Vaupés. (f–j): E. minyas. (f) Leaf of Z. tolimensis 
affected by herbivory. (g) Egg clutch on female cone of Z. incognita. (h) Larvae on Z. encephalartoides, with another reported cycadivore 
Aulacoscelis sp. (Coleoptera: Orsodacnidae) visible in the background. (i) Pupae on Z. encephalartoides. (j) Dorsal view of female adult from 
Girón, Santander. (k–o) E. godartii. (k) Zamia chigua leaf affected by herbivory. (l) Egg clutch on rachis of Z. chigua. (m) Newly emerged larvae 
on Z. amplifolia leaflet. (n) Pupae hanging on the underside of Z. chigua leaf. (o) Dorsal view of adult female from Parque Natural los Katíos, 
Riosucio. Credits: Jonathan Castro (g) and Cornelio A. Bota-Sierra (i).
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caterpillars in South America were also recorded feeding only on 
species distributed West to the Andes, in the Pacific and Cunaria 
Zamia sub-clades (subclades following Calonje et al.,  2019). 
Contrastingly, E. minyas shares host plants in the Amazonian clade 
with E. toxana. Notably, no Eumaeus nor Zamia species are re-
ported in the Guianas or Eastern Brazil.

3.3  |  Divergence times of the Zamia and Eumaeus 
phylogenies

We found striking contemporaneity between Zamia and Eumaeus 
diversification (Figure  5). Although Zamia evolution dates back to 
the Paleocene, the age of the last common ancestor of all extant 
species (mean age: 9.54 [9, 10.64]) is remarkably similar to that of 
Eumaeus (mean age: 8.45 [6.11, 10.47]) crown diversification in the 
Miocene. Notably, the most diverse clade of Zamia, the Mainland 
clade, evolved (mean age: 5.97 [3.92, 8.15]) synchronously with the 
core Eumaeus clade (mean age: 6.13 [4.33, 8.37]), which comprises 
all Eumaeus species except by E. childrenae. Similarly, the divergence 
of the Mesoamerica clade of Zamia (mean age: 3.9 [2.54, 5.34]) coin-
cides with the split between Caribbean E. atala and mesoamerican E. 
toxea (mean age: 4.08 [2.12, 5.99]).

4  |  DISCUSSION

We present the first quantitative study of correlated phylogenies 
between interacting partners for a group of cycads and their insect 
herbivores. Our analyses of interactions between Eumaeus butter-
flies and their host plant species of Zamia provide strong evidence of 
cophylogenetic signal between these clades. In addition, we found 
striking temporal overlap between the divergence times of the major 
Zamia and Eumaeus clades, further supporting a pattern of corre-
lated evolution. We then dissected the pattern of phylogenetic con-
gruence using mixed models and showed that the cophylogenetic 
signal is likely driven by phylogenetic tracking. This work represents 
a step toward a better understanding of the evolution of a recent yet 
specialized plant–herbivore interaction for one of the most ancient 
and endangered plant lineages.

Our cophylogenetic analysis shows a strong dependency be-
tween the evolutionary histories of the butterflies and their host 
plants, as predicted by Ehrlich and Raven's (1964) arms race model 
of co-evolution. The latter posits that herbivory drives the evolution 
of novel defenses in plants, which then drives selection for traits 
to overcome them in butterflies. Each successful counteradaptation 
drives diversification, by placing the innovator in a new adaptive 
zone. Consequently, the interactions between plants and herbivores 

F I G U R E  2 (a) Revised distribution of Eumaeus species in the Neotropics, based on additional fieldwork and specimen surveys. (b) 
Magnified view of Colombia showing Eumaeus point localities superimposed on Zamia range maps. Asterisks within the map show study 
sites. Credits: Photographs of the northern clade species (E. atala, E. childrenae, E. toxea): Butterflies of America.
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    |  7 of 13SIERRA-­BOTERO et al.

become phylogenetically structured over evolutionary time, with 
related herbivores feeding on closely related plants. To date, there 
have been no phylogenetic studies of the chemical defenses of 

cycads and their relationship with herbivores. However, there are 
many examples in angiosperms of toxic compounds with phyloge-
netic signal, such as cardenolides in Asclepias (Apocynaceae), both 

F I G U R E  3 Phylogenetic association between Eumaeus and Zamia based on host plant records. Zamia phylogeny and clade names from 
Calonje et al. (2019).

F I G U R E  4 PACo permutation scores for the interaction matrix between species of Eumaeus and their Zamia host plants. The distribution 
depicts the permutation best-fit Procrustean superimpositions. PACo returned statistically significant phylogenetic signal, implying that the 
interaction network between Zamia and Eumaeus is more congruent than permutated networks with randomized interaction links.
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cardenolides and glucosinolates in Erysimum (Brassicaceae) or fu-
ranocoumarins in Umbelliferae (Berenbaum & Feeny,  1981; Züst 
et al., 2020). In these cases, adaptation to plant toxicity traits drives 
the specialization of beetle and butterfly herbivores, which accord-
ingly show phylogenetically conserved host plant use (Berenbaum 
& Feeny, 1981; Rasmann & Agrawal, 2011; Wheat et al., 2007). It is 
therefore highly plausible that closely related Zamia species share 
similar chemical defenses that exert strong selective pressure for 
host conservatism in Eumaeus.

Nonetheless, it is important to note that congruent phylogenies 
of interacting taxa are neither necessary nor sufficient evidence of 
co-evolution, as they can also result from other processes (Blasco-
Costa et al., 2021; Janzen, 1980; Russo et al., 2018). For example, 
congruent phylogenies might arise when both taxa are subject 
to the same vicariant events, which subdivide their populations 
and thereby result in correlated phylogenetic branching (Russo 
et al., 2018). Indeed, we observe parallel geographic structure in the 
phylogenies of both Eumaeus and Zamia. Calonje et al. (2019) showed 
that early divergent clades of Zamia are distributed in the Caribbean 
and Mesoamerica, with more recent and diverse clades distributed 
in southeastern Central America and South America. Similarly, we 
show here that early divergent species of Eumaeus range from the 
Caribbean to Mesoamerica, while the nested southern clade is re-
stricted to the Isthmus and South America.

Eumaeus godartii is only found to the west of the Andes and uses 
the Isthmus clade of Zamia exclusively, suggesting the western cor-
dillera of the Andes is a crucial geographic barrier. Similar phylogeo-
graphic breaks have also been observed in Atta ants, for which the 
Andes comprise an asymmetrical barrier to gene flow between pop-
ulations in Central America and the rest of South America (Muñoz-
Valencia et al., 2022). Likewise, clades in the hummingbird genus 
Metallura diverged and expanded from opposite sides of the Andes 
(Benham et al.,  2015). However, the barrier effect of the Andes 
might not be as strong as previously thought for Eumaeus butter-
flies, or might have changed due to recent deforestation, since we 
found specimens exhibiting intermediate characteristics between E. 

godartii and E. minyas in the Magdalena and Cauca valleys. These 
regions may represent contact zones that allow gene-flow between 
these sister species, although they strongly diverge in their prefer-
ences for Zamia host plant species. Incomplete reproductive isola-
tion between E. minyas and E. godartii is consistent with the short 
branch lengths subtending these species in the most recent whole-
genome phylogeny (Robbins et al., 2021). Indeed, the Cauca valley 
is known to be a hybrid zone between other species of butterflies, 
such as Heliconius (Arias et al., 2008), and vertebrates such as the 
Andean warbler (Céspedes-Arias et al., 2021).

Despite significant biogeographic correlations, the distributions 
and phylogeny of Zamia are not perfectly mirrored by Eumaeus. 
Notably, we observed biogeographic incongruences at deep nodes; 
the most ancient Eumaeus species are distributed in Mesoamerica, 
whereas the most ancient clade of Zamia diversified in the Caribbean. 
Furthermore, E. childrenae and E. toxea are not sister species, despite 
overlapping in the Sierra Madre Forest and the Mexican Drylands 
bioregion, where they use the Mesoamerican and Fisheri Zamia 
clades, respectively. Similarly, E. toxana and E. minyas are not sisters, 
although they co-occur throughout the Amazon Basin. This is in 
sharp contrast with Zamia, where there is well-known conservatism 
in their geographic ranges (i.e., closely related Zamia tend to inhabit 
the same geographic regions).

As well as vicariance, another process that can account for co-
phylogenetic signal without invoking co-evolution is phylogenetic 
tracking. Phylogenetic tracking is common when there are strong 
asymmetries in interaction strength, with one group relying more 
strongly upon the other (Russo et al., 2018). Under this scenario, 
parallel phylogenies result when the dependent species diverges 
and occupies niches created by speciation of the other (Russo 
et al., 2018). Thus, because one group tracks the speciation of the 
other group, diversification is usually asynchronous (Blasco-Costa 
et al., 2021; Ramírez et al., 2011). In the case of Zamia and Eumaeus 
interactions, host plants seem to exert stronger selection on their 
herbivores than the other way around. This asymmetry in selection 
is substantiated by previous work, showing that Eumaeus herbivory 

Effect χ2 p-Value

Phylogenetic 
covariance matrix 
h (closely related 
butterflies use 
closely related 
plants)

−0.1822 1.0

Phylogenetic 
covariance matrix 
c (closely related 
butterflies use the 
same plant).

0.2197 .639

Phylogenetic 
covariance matrix g 
(a butterfly species 
uses closely related 
host plants)

32.69 5.262e-
09

TA B L E  1 Likelihood ratio tests (LRTs) 
for the phylogenetic effects in the 
PGLMM of Zamia–Eumaeus interactions. 
Significant effects in bold.
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    |  9 of 13SIERRA-­BOTERO et al.

has little impact on cycad natural populations (Zabaleta Doria, 2013). 
Hence, it is likely that host plant use of Eumaeus tracks the evolution 
of their host plants. Nevertheless, we found remarkable temporal 
coincidence in plant and butterfly diversification (Figure 5). In par-
ticular, we show that the stem age of Eumaeus is consistent with the 
crown age of extant Zamia. This result suggests the rapid divergence 
of Eumaeus from its sister genus Theorema resulting from a host-shift 

from ancestral angiosperms hosts (Robbins et al., 2021), to the com-
mon ancestor of the most recent adaptive radiation of Zamia in the 
Miocene.

Qualitative observations about natural history and biogeog-
raphy can generate useful hypotheses explaining cophylogenetic 
patterns observed between Eumaeus and Zamia. However, assess-
ing the strength of association between the interaction matrix and 
the phylogenies offers a quantitative approach for disentangling 
co-evolution, vicariance, and phylogenetic tracking (Blasco-Costa 
et al., 2021; Russo et al., 2018). For instance, finding an effect of host 
plant phylogeny without an effect of butterfly phylogeny implies 
that phylogenetic signal is determined by the host plants, that is, 
phylogenetic tracking (Blasco-Costa et al., 2021; Russo et al., 2018). 
In contrast, if the phylogenies of host plants and butterflies do not 
predict the interaction matrix, this implies that the branching pat-
terns are similar because external selective forces such as vicariance 
are acting on both groups. Finally, the case that both phylogenies 
predict the interaction matrix is consistent with co-evolution, that is, 
both partners exert selection on one other, which leads to reciprocal 
evolutionary change (Blasco-Costa et al., 2021; Russo et al., 2018).

To test these possibilities, we fit a mixed model with phyloge-
netic effects to the Eumaeus–Zamia interaction matrix. We found 
a highly significant effect of plant phylogeny, but not of butterfly 
phylogeny or the joint nested phylogenetic effect. Therefore, it is 
plausible that the significant global cophylogenetic signal found 
with paco is primarily driven by the strong influence of the plant 
phylogeny predicting the bipartite network. As such, our results in-
dicate that phylogenetic tracking is the most plausible mechanism 
underlying the significant cophylogenetic signal between Zamia and 
Eumaeus. This finding is also compatible with the original formula-
tion of “sequential evolution,” in which plants drive the evolution of 
herbivorous insects, but without an appreciable selection feedback 
mechanism (Jermy, 1976).

Nonetheless, while phylogenetic tracking stands out as partic-
ularly relevant to this interaction network, we concur with Blasco-
Costa et al. (2021) argument that vicariance, phylogenetic tracking, 
and co-evolution are not mutually exclusive. Patterns observed in 
ecological interactions are more plausibly a combination of processes, 
each acting with different intensity (Blasco-Costa et al., 2021), par-
ticularly for an interaction exhibiting a strong level of host conser-
vatism, such as the Eumaeus-Zamia (Calonje et al., 2010, 2011, 2015; 
López-Gallego, 2007; Segalla et al., 2021; Segalla & Calonje, 2019). In 
this study, we have consolidated an exhaustive dataset of host plant 
use by Eumaeus to start decoupling macroevolutionary patterns, but 
many gaps remain. We outline three main avenues for data acquisi-
tion to gain insight into the extent of codivergence between cycads 
and Eumaeus herbivores.

First, collecting data on interaction traits, such as frequency 
of visits, abundance, number of eggs laid, leaf damage, or sensory 
biases, can provide a more comprehensive picture of the eco-
evolutionary dynamics of this two-sided interaction. For instance, 
the characterization of host defensive traits across the Zamia phy-
logeny can help to explain the strong phylogenetic signal on host 

F I G U R E  5 (a) Divergence time estimation of Zamia and Eumaeus 
stem and crown groups with exponential priors. (b) Mean and 95% 
confidence intervals for divergence times of the major Zamia and 
Eumaeus clades. All Zamia divergence times are from estimates in 
Calonje et al. (2019).
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plant use by Eumaeus butterflies. Second, while genomic resources 
are now available for all Eumaeus species (Robbins et al.,  2021), 
next-generation sequencing of cycads has lagged behind. Genomes, 
transcriptomes, and metabolomes of Zamia species would enable 
profiling clade-specific chemical defenses, which could in turn be 
linked to Eumaeus counterdefenses. Third, our approach of scoring 
presence–absence of interactions based solely on morphology and 
distribution might not properly account for cryptic diversity. Since 
the greatest diversity of Zamia species is found in South America, we 
anticipate finding structured populations in the southern Eumaeus 
clade concomitant with the extensive diversity of this host plant 
group in this continent. Cryptic diversity might be especially prev-
alent in aposematic butterflies such as Eumaeus whereby positive 
frequency-dependent selection can constrain the phenotypic diver-
gence of traits traditionally used in Lepidoptera taxonomy, such as 
wing color patterns. Exhaustive genomic sampling at the population 
level across broad geographical scales is therefore necessary to elu-
cidate the extraordinary recent evolution of this ancient plant lin-
eage and their unique and specialized herbivores.
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